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THEORY OF THERMAL WAVES 

V. A. Bubnov UDC 532.24.02 

An analogy between thermal and electromagnetic waves is established. The conditions under which thermal 
oscillations can give rise to acoustical oscillations are derived. The coefficients of thermal conductivity in 
liquid helium are calculated as a function of the temperature below the lambda point. 

1. Analogy between Thermal and Electromagnetic Waves. We shall examine the first two Maxwell equations in the 
case that electric and magnetic conduction currents are absent: 

0D 0B 
rot H -- , rot E . . . .  . 

Ot Ot 

Let the physical properties of the medium be determined by the following equations: 

D : e o E + P ,  B:~oHq-M.  

Substituting these equations into system (1), we rewrite the latter as follows: 

0E aP OH OM 
r o t H = e 0 - ~ - + - ~ ,  r o t E : - - ~ 0  0 ~  Ot 

(1) 

(2) 

In these equations, the second terms on the right determine the electric and magnetic displacement current densities 
which arise as a result of polarization and magnetization, respectively. 

In the stationary case, the system of equations (2) goes over into the following: 

r o t H = 0 ,  r o t E = 0 ,  (3) 

which for a two conductor line has a solution of the form [ 1 ]: 

H=Ho=Ho(x)  k, E=Eo=Eo(x)  j, Ho--Eo. (4) 
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In the line indicated, the x axis is oriented along the conductor axis, while the y and z axes lie in the transverse 
cross section plane of the conductor. 

Let us assume that the electric and magnetic displacement current densities satisfy a law analogous to Ohm's law: 

OP _ rE, O__MN = ?,,,H . Then the equations for the nonstationary electromagnetic field assume the form 
Ot Ot 

OE OH (5) 
= - - ,  rot E = - -  ?mH - -  ,Uo - -  rot H ?E @ % Ot Ot 

We seek the solution of the system of equations indicated in the form 

H I(x ,  t) H 0(x); E - -  el(X' t) Eo(X). 
% 

It is not difficult to prove the validity of the following equalities: 

rot H -- a! Hoj - OI E0, rot E -- 1 ael E0 k _ 
Ox Ox eo Ox 

(6) 

1 0el Ho. ( 7 )  

e o ax 

Since E o and H 0 do not  vanish, substituting (6) into (5) and using (7), we obtain 

ael . ,' aI  o!  ae, (8) 
i -  ~ el , 00% - ~  q- ?,,~eo -t - 

at % ax ax 

In the particular case when 3' = 7 m = 0, the system (8) goes over into the equations first obtained by Mandel'shtam 
[I)  a. 

For a stationary electromagnetic field e I = CU, and e0P ~ = CL. Using these expressions, we rewrite the equations in 
system (8) as follows: 

Here R = 3,me o/C and G = 3`C/e o. 

c 2 L  + = _ 0_2u 
Ot Ox 

c o u + c u = -  ~ 
at Ox 

(9) 

(1o) 

Equations (9) and (10) determine the voltage drop U and the change in the current strength I on a section 3x of the 
two conductor line [2]. 

Using a well-known procedure, we can obtain the telegraph equation from (9) and (10): 

Let us rewrite Eq. (9) as follows: 

OzU OU OzU 
LC + (GL -~- RC) -- - -  RGU. 

at 2 at ax z 

1 OU L OI 
Z (11) 

R ax R OI 

Now, it expresses Ohm's law for the element dx of the line, in which there is an electromotive self-induction force. 
Fourier's hypothesis, on the other hand, 

aT 
q = - - z ~ - -  (12) 

Ox 

corresponds to Ohm's law only in a particular case. 

There presently exist several techniques for deriving the heat-conduction equations of hyperbolic type [3-9]. All of 
these methods contain explicitly or implicitly the hypothesis of thermal relaxation, which in its turn requires the following 
generalization of Eq. (12): 

OT Oq (13) q =  - - ~ - - - - ~ z - -  . 
Ox Ot 
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Comparing Eqs. (13) and (11) establishes the analogy between the thermal flux q and the current strength I and the 
temperature T and voltage U. 

In analogy to (10) the equation for the balance of the quantity of heat must be written as follows: 

aT Oq c~,o~ + O ( r ) -  ax (14) 

The heat source Q(T) must be calculated independently,  for example, in terms of the latent heats of  mixing reac- 
tions, vaporization, melting, and sublimation. These phenomena are equivalent to leakage of  charge in a two-conductor 
line. 

In order to obtain the heat-conduction equation, we shall rewrite Eq. (14) using (13): 

OT OaT Oaq 
c ~ , 9 ~  = )~ -~- oc - - Q ( T ) .  (15) 

Ot Ox 2 OxOt 

Let us differentiate Eq. (14) with respect to t: 

aaq = c~9 OaT + dQ OT 
- ato---2 ~ dT at 

The latter relation permits rewriting Eq. (15) as follows: 

OZT ( dQ)  aT = ) OaT Q(T). (16) 
cop~ - g U  + coo + ~ -Y~ 0-7- a.~ 

It should be noted that dQ/dt  enters into the coefficient in front of  aT/at  which characterizes the thermal resistance of the 
material. Since the latent heats can have any sign, it is not  difficult to see that the heat source can decrease or increase the 
temperature oscillations. 

Let us introduce the following notation: p = 1 + ~ d QQ, k0 = k/p, k = X/c,,9.. . Then Eq. (16) can be re- 
written as: c~9 dT 

a O2T. 4- O_fT = ko OaT 1 Q(T). (17) 
p 0l~ " at Ox 2 cvpp 

Here the parameter k o = ko(T) should be called the effective coefficient of  thermal diffusivity. The more complete equation 

(17) leads to the following. 

If  in a thermodynamic system latent heat effects are present, then in determining the coefficient of  thermal diffusivity 

with the help of the parabolic heat-conduction equation, we find that k = k(T). In reality, a wave process, characterized by 

two constants k and ~, can proceed in such a system, while the quantity Q(T) must be calculated from other measurements. 

Let Q(T) = 0, then instead of (16), we shall have 

c~pa O2__T + c~9 a T _  __O2T (18) 
Ot 2 )~ at Ox 2 

Comparing (18) with the telegraph equation, we establish the following analogy between the thermophysical and electric 
quantities: X = 1/R, e~ = L/R,  CvP = C. 

2. Thermal Relaxation Time. In the early papers on the use of a hyperbolic type of heat-conduction equation, the 
velocity of thermal waves was identified with the velocity of acoustic oscillations, while the parameter c~ was equated to the 
Maxwellian remxation time. 

However, according to experimental data on propagation of acoustic and thermal waves in liquid helium, it turned 
out that the velocities of  these waves differed by an order of  magnitude [10]. It must be admitted that the identification 
of the thermal relaxation time with the Maxwellian stress relaxation time is not  completely justified; thus, the latter is 
determined for the range of shear velocities, when only energy dissipation mechanisms operate. This is analogous to the 
experimentally observed fact that the magnitudes of the coefficient of  viscosity, found from viscosometric and acoustic 
measurements, differ strongly. The s here is that according to the methods indicated the viscosity is determined in a 
different range of  shear velocities. 
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TABLE 1. Thermal Relaxation Time 

S u b s t a n c e  

Air 
Carbon dioxide 
Water 

I Frequency, v, MHz 

0,132--0,4 I 
0,304 

7---250 

cz.lO 8 s e e  

0,98--1,59 
1,93 
1,27 

g, m]see 

169--i32 
20,1 
3,32 

~o, 1"11 ]8ec 

327 
259 

1490 

For this reason, in order to determine the thermal relaxation time, the hyperbolic heat-conduction equation was used 
for calculating acoustical dispersion [ 1 1 ]. It is appropriate to recall that in refining Stokes' equation, Kirchhoff in 
calculating acoustical dispersion closed the equation of heat conduction using Fourier's hypothesis. Discussing this step, 
he emphasized that in this case, the quantity of  heat is determined by the increase in temperature that occurs in the 
absence of compression. In other words, acoustical action is not manifested in thermal motions of  the material medium. 
On the other hand, closing the heat-conduction equation using hypothesis (13) takes into account the destruction of heat 
transfer between molecules due to acoustical action. 

The following equation was obtained in [ 1 1 ] for the coefficient of absorption of sound waves: 

[ ~  ~ @ 2~2(y0 - l)('~02- 1) k (19) 

vz = ~ , T )  o Vogo g--~ 

Here, the additional notation of  the Stokes-Kirchhoff  equation is introduced: 

( ~ - )  =2~-~-~(@ --~ + ( ? ~  0 go a 9 ,0 k ) .  (20) 

Knowing the difference between the experimental value of  ~/v  2 and that calculated using (20), it is possible to determine 
the velocity of  the thermal wave g. The numerical values of g permit determining the thermal relaxation parameters oc 
The results of the calculations indicated are presented in Table 1 for some gases at 0~ and water at 20~ 

3. Conditions for Transmission of  Thermal Waves. We seek the solution of Eq. (18) for a damped traveling wave 
in the form 

1 
T = e-~'t0 (x, t), V = 2-~" (21 )  

after which we rewrite Eq. (18) as follows: 

0~0 OzO 
Ot z __ yz 0 = gz Ox z (22) 

If  the thermal wave propagates only in one direction, then the function 0 can be represented as 

O = A cos to ( t glX ) .  (23) 

Substituting (23) into (22), we determine the velocity of  propagation of traveling waves gl : 

g a : 1 + c0 z . 

I f  

(24) 

. . . . . .  ( (  l ,  (25)  
o 2~co 

then the velocity of  propagation of  the thermal wave becomes independent of frequency and it must be defined according 
to the equation 

gl  = g = V X/c~p~ . (26) 

Let us clarify the conditions under which the relation between the amplitudes of oscillations at different frequencies 

remain unchanged. For this, we call attention to the damping factor e -Tt, which determines the change in the amplitude of 

the oscillations. For this purpose, we shall represent the expression e -Tt by the function of  the path traversed by the wave 
x, keeping in mind expression (24). Substituting (24) into the exponent of the damping factor 7t, we obtain 
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K" /0 -a 

:! / 

0 m .  
,/0 ;) ,,'a T 

Fig. 1. Thermal conductivity of liquid 
helium, pressurized by its own saturated 
vapor: 1) capillary I; 2) capillary II; 3) 
calculation using Eq. (30). 

?t = - - ~ ~ 1  x 1 | /  GO 1 ' / /  ?2 
20: g~ 2 I / 0:Z. 1 q- - -  x. 

(O 2 

It is evident from this equation that in order to transmit the thermal wave without distortions, it  is necessary that 
adsorption be independent of  frequency. This will be observed when condition (25) is satisfied. 

For  the substances indicated in Table 1, condition (25) will be satisfied, if the frequency v >/ 10 s Hz. Since the 
temperature is related to density and pressure with the help of the equation of state, thermal oscillations will induce acoustic 
oscillations. 

The problem of thermal generation of elastic vibrations in solids was first studied theoretically in [12]. 

It is shown in what follows that for liquid helium the thermal relaxation time is on the order of 10 -a sec, which 
ensures the absence of dispersion with u ~> 10 a Hz. This does not contradict  the experiments performed by V. P. Peshkov 
on determining the velocity of  propagation of thermal waves in liquid helium. 

It  is interesting to note that the possibility of  exciting acoustic oscillations by thermal oscillations and vice versa 
was discovered experimentally in liquid helium [ 10]. 

Let the heat source be Q(T) = j3T, where the coefficient/3 can have any sign. We shall now rewrite Eq. (16) as 

O2T OT 02T (27) 
a2 - -  q- al --  aoT, 

Ot z Ot Ox ~ 

where ao = ~/X, al ~ (q,9 + c~)/;~, a2 = c~o0:/;~. 

We seek the solution for a traveling wave in the form T ~ e-rtO (x, t), ? = (Q9 q- cz~)/2~c~.9, after which instead 
of  (27) we obtain 

02___O_ 0 _ K~.0 = g 2 _ _  020 (28) 
OtZ Ox z 

f l u  Here KZ= ? " - - -  

Substituting (23) into (28), we obtain an expression for the velocity of propagation of the wave 

g l : g ( 1  q - k ? 2  ~g2 2 (29) 

It is not  difficult to show that the condition for the ratios of the amplitudes of  the vibrations at different frequencies to 
remain unchanged has the following form: 

K c~p - -  0:f~ 
- -  ( ( 1 .  

r 20:coG9 

It follows here that the sign and magnitude of  the parameter/3 can have a large effect on the conditions for transmission 
of thermal waves. 

1010 



TABLE 2. Thermal Conductivity of Liquid Helium 

7, K ~ . 1 0  ~ , k*10 "3, W/cm.deg, }~.10-n, W/cm.deg, 
sec/em 2 curve 1 in Fig. 1 cale~ aCCo to' (30) c~. 10 a, see 

1,21 
1,37 
I ,57 
1,70 
1,80 
1,90 
2,0 
2,1 
2,15 

6,93 
5,51 
5,29 
5,47 
5,84 
8,12 

16,3 

0,698 
1,647 
3,896 
6,094 
7,992 
7,491 
4,694 
4,046 
1,559 

o, 798 
1,647 
3,971 
6,483 
8,669 

10,128 
9.869 
7,077 
4,063 

4,12 
4,72 
4,63 
4,44 
4,35 
3,49 
2,24 

4. Coefficient of Thermal Conductivity of Liquid Helium. There is no unified opinion concerning the magnitude of  
the coefficient of  thermal conductivity of liquid helium at temperatures below the ;k-point in the scientific literature. Some 
researchers believe that in the temperature range 1.7-2.0~ the coefficient of  thermal conductivity has a sharp maximum, 
whose value is more than 800 times greater than the thermal conductivity of  copper at room temperature. In a number of 
papers by Soviet investigators, this point of  view is disputed. A detailed discussion of this problem is presented in [10]. 
The difficulty in establishing a single point of  view lies in the fact that the experimental facts indicate a nonlinear relation 
between the heat flux and the temperature gradient. The latter circumstance invalidates Fourier's hypothesis and makes it 
impossible to determine the coefficient of  thermal conductivity uniquely using existing techniques. 

Using the theoretical representation presented above, we shall examine the experimental data obtained by Keesom 
and Saris [I 3], who investigated the dependence of the heat flux on the temperature gradient for liquid helium in a capillary 
in equilibrium with its saturated vapor over the entire range of  temperatures from 1.2~ to the X-point. They published 
detailed tables of  the functional dependence indicated for two capillaries with different diameter and, in addition, the 
temperature enters as a parameter. Using the tables, the coefficient of thermal conductivity X is calculated according to the 
equation 

q 

dx  

These experimental points are plotted in the X and T plane (Fig. 1). The smooth curve 1, which smooths the spread in the 
experimental data, is drawn through the points. The corresponding values of the coefficient X are shown in Table 2 as a 
function of temperature. They were used to calculate the complex CvP/X and the data on c v and p are taken from [10]. 

The values of  the complex indicated are on the order of  10 -s (Table 2). Therefore, the term bT/at can be neglected in 
(18) and it transforms into the equation for propagation of  undamped waves. Then Eq. (26) is valid for the velocity of 
propagation of  such waves, while the numerical values of  g in the range of  temperatures being examined were first measured 
by Peshkov [10]. The thermal relaxation parameter ~ was calculated with the help of  the experimental data obtained by 
Peshkov using Eq. (26) (Table 2). It turned out that a is a weak function of  temperature. 

If it is assumed that in the temperature range examined ~ = 4.72"10 -3 c = const, then we obtain an equation from 
(26) for determining the coefficient of  thermal conductivity: 

= 4.72 10-3c~9g 2. (30) 

Using experimental data for c v, g, and p, we calculate X from Eq. (30) (curve 1 of  Fig. 1 ; Table 2). 

The qualitative behavior of  curves 1 and 2 is the same, but a quantitative difference occurs in the range from 1.8 to 
2.1~ A large spread in the experimental data is observed here. 

NOTATION 

H, magnetic field intensity; E, electric field intensity; D, electric displacement vector; B, magnetic induction vector; 

%, dielectric constant; P0' magnetic permeability; P, polarization vector; M, magnetization vector; j, k, unit vectors along the 

y and z axes, respectively; x, y, z, coordinate axes; el, charge; I, current strength; C, capacitance; U, voltage; L, inductance; 

t, time; R, resistance of  a two-conductor line; G, coefficient of  charge leakage; q, heat flux; X, coefficient of  thermal con- 

ductivity; T, temperature; a, thermal relaxation time; p, density; c v, specific heat capacity at constant volume; g, velocity of  

the thermal wave; 7o'  ratio of  heat capacities; p, viscosity; k, lhermal diffusivity; go' Laplace's value of the velocity of  

sound; ~, coefficient of  absorption; v, frequency; and w, circular frequency. 
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HETEROGENEOUS VIBRATIONAL RELAXATION UPON FREE 

MOLECULAR FLOW OF DIATOMIC GAS PAST CONCAVE 

BODIES 

L. P. Gashtol'd UDC 533.601.18 

The method of successive calculation of multiple reflections is used for investigating heterogeneous vibra- 
tional relaxation when a free molecular stream of diatomic gas flows past a concave body. 

In the investigation of processes of heterogeneous relaxation in gases it is important to distinguish a class of problems 
in which this is the principal channel of relaxation. It must be taken into account that the importance of heterogeneous 
relaxation increases with decreasing gas pressure. Since the terrestrial atmosphere at altitudes ~ 150 km is characterized by 

low densities and pressures, it may be expected that in the physicochemical aerodynamics of bodies flying in the atmos- 
phere at such altitudes problems of nonequilibrium kinetics will arise in which the channel of heterogeneous relaxation is 
the decisive one. 

Gashtol'd [ 1 ] distinguished a class of aerodynamic problems in which heterogeneous relaxation of translational 
energy is important, and a method was suggested for calculating the contribution of this process to the aerodynamic 
characteristics; this method was based on the successive calculation of multiple reflections. 

The present work pinpoints a class of problems of the aerodynamics of the upper atmosphere, in which the principal 
role is played by the process of heterogeneous relaxation of the vibrational energy of gas molecules, and a method of solving 
them is suggested; this is analogous to the method used in [ 1 ]. 

We examine the external steady-state problem of flow of a free molecular single-component stream of diatomic gas 
past a concave body. The surface temperature of the body past which the gas flows is taken to be specified. 

It is assumed that the mean translational energy of the molecules in a gas stream coming from infinity is much 
larger than the mean translational energy of molecules in a gas stream reflected with full accommodation and that it is 
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